03.09.2021 Luminescent Cu4I4-cubane clusters based on N-methyl-5,10-dihydrophenarsazines

by  M. Galimova, E. Zueva, A. Dobrynin, I. Kolesnikov, R. Musin, E. Musina A. Karasik

Dalton Trans., 2021,50, 13421-13429

doi: 10.1039/D1DT02344F

Two luminescent Cu4I4-cubane tetramers with N-methyl-10-(p-halogenophenyl)-5,10-dihydrophenarsazine ligands were synthesized and characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction analysis. The UV–Vis absorption and emission properties were studied and rationalized by DFT and time-dependent DFT calculations. The luminescence behavior was found to be rather different from that of recently reported tetranuclear copper iodide cubane clusters based on As,O-analogues – 10-(aryl)phenoxarsines. The crystalline powders of both complexes exhibit the temperature-dependent dual-band emission: the low-energy emission originates from the cluster-centered (3CC) triplet state, whereas the high-energy emission was attributed to the intraligand (3IL) triplet state.

 

01.09.2021 Investigation of wafers used as paper binding in the academician von Struve manuscripts

by Pankin, D., Povolotckaia, А., Borisov, E., Rongonen, S., Mikhailova, А., Tkachenko, T., Doledova, N., Rylkova, L., Kurochkin, A.

Journal of Cultural Heritage, 51, 125-131

https://doi.org/10.1016/j.culher.2021.08.005

This work is devoted to the study of the composition of such a characteristic object for the 17–19 centuries as wafers, which were used to join sheets of paper in documents or to seal letters. Owing to the limited information in the literature and possible degradation processes that may occur with them in this paper, the modern optical techniques were applied to gain information about them. As the object of the investigation the wafers found in the hand-written documents of Academician Friedrich Georg Wilhelm von Struve (Vasily Yakovlevich Struve 1793–1864) were chosen (Fund number 721, the RAS Archive, Saint-Petersburg branch, Struve V.). Besides the common way it was found that a large number of colored wafers were used to join several sheets in one composite elongated document and also to make correction on top of what was written. As the part of a major task aimed at maintaining the fund documents dated 19th century and the stability of the used joining wafers in particular the Raman and UV–Vis absorbance spectroscopies were applied in order to investigate wafers chemical composition. It was found the use of two different types of pigments for orange hues. One of them is cinnabar and another one is made up of red lead and massicot mixture. The Prussian blue was used for wafers with dark blue hue and as a mixture with massicot for green hue. According to UV–Vis absorbance spectroscopy it was found the use of anthraquinone type pigment for the red, rose and purple hues. The presence of the wafers with different base materials were determined by means of the Raman spectroscopy, namely of the vegetable (presumably starch) and protein (presumably gelatin) origin. The obtained results were compared with the data available in the previous researches, including the recipes given in the publications of the 19th century.

 

01.07.2021 Binuclear charged copper(I) complex as a multimode luminescence thermal sensor

Sensors and Actuators A: Physical Vol. 325, 112722

https://doi.org/10.1016/j.sna.2021.112722

Luminescence thermometry became one of the most rapidly developing scientific areas in the last decade. A lot of scientific groups are working on the design of a highly sensitive and accurate thermometer based on monitoring the chosen luminescence parameter. However, it is still a challenge to create a multimode sensor utilizing several temperature-dependent parameters for thermometry, which could broaden the working range and improve thermometric characteristics. Here, we successfully demonstrate the binuclear helical charged complex [L3Cu2](BF4)2 (L = 1-pyridine-2-ylphospholane) in head-to-head configuration with solid-state single-band emission as a multimode optical thermometer. Thermal sensing was provided using luminescence intensity ratio, spectral line position, bandwidth, and lifetime. Ratiometric temperature determination was performed by the successful use of deconvolution analysis. The thermometric performance was studied in terms of relative thermal sensitivity, which was varied from 0.93 % K−1 for line position to 0.11 % K−1 for bandwidth at 298 K. The obtained results show Cu(I) complex as a cheap multimode luminescence thermal sensor in the 98–393 K range.

 

22.04.2022 Platinum(II) Complexes with 10-(Aryl)phenoxarsines: Synthesis, Cis/Trans Isomerization, and Luminescence

by M. Galimova, T. Begaliev, E. Zueva, S. Kondrashova, S. Latypov, A. Dobrynin, I. Kolesnikov, R. Musin, E. Musina, A. Karasik

Inorg. Chem. 2021, 60, 9, 6804–6812

https://doi.org/10.1021/acs.inorgchem.1c00672

Synthesis and structural and photophysical characterization of platinum dihalogenide complexes formulated as [PtHal2L2], where Hal = Cl and I, with different 10-(aryl)phenoxarsine ligands such as 10-(p-chlorophenyl)phenoxarsine, 10-(p-tolyl)phenoxarsine, and 10-(phenyl)phenoxarsine are reported. The structures of complexes were determined by NMR spectroscopy, mass spectrometry, and X-ray analysis. Cis/trans isomerism of the complexes in solution was studied by NMR spectroscopy. In the solid state, under UV irradiation, platinum diiodide trans complexes exhibit an intense orange-red emission, which was attributed to a metal halide-centered triplet state. The UV/vis absorption and emission properties were studied and rationalized by density functional theory (DFT) and time-dependent DFT calculations.

24.03.2021 Assembly of Heterometallic AuICu2I2 Cores on the Scaffold of NPPN-Bridging Cyclic Bisphosphine

by I. Dayanova, A. Shamsieva, I. Strelnik, T. Gerasimova, I. Kolesnikov, R. Fayzullin, D. Islamov, A. Saifina, E. Musina, E. Hey-Hawkins, A. Karasik

Inorg. Chem. 2021, 60, 7, 5402–5411

https://doi.org/10.1021/acs.inorgchem.1c00442

The row of metallocyclic dinuclear gold(I) complexes with cyclic diphosphines, namely, P-pyridylethyl-substituted 1,5-diaza-3,7-diphosphacyclooctanes, has been obtained. Further interaction of the dinuclear gold(I) complexes with copper(I) iodide gave the first examples of hexanuclear AuI/CuI complexes containing two unusual trinuclear AuICu2I2 fragments. The structures of di- and hexanuclear complexes were confirmed by NMR spectroscopy, ESI mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. All of the obtained complexes are moderate emitters in the solid state. Dinuclear gold(I) complexes displayed a greenish emission with the maxima in the emission spectra at ca. 550 nm. The obtained hexanuclear heterobimetallic AuI/CuI complexes are triplet solid-state blue emitters with the maximum in the emission spectra at 463 and 484 nm. According to the TD-DFT calculations, the observed emission of all studied complexes had a triplet origin and was caused by the 3CC or 3(MLCT) T1 → S0 transitions for dinuclear and hexanuclear complexes, respectively.

Переключение языков (offcanvas)